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Aerodynamic Maneuvering Hypersonic Flight Mechanics

1. Introduction

The emergence of current high-interest missions involving aeromaneuvering
hypersonic flight has given rise to the corresponding need for preliminary
design and performance analyses of such vehicles. This need in turn has
motivated efforts to develop simplified analytical and computational methods for
parametric analysis of maneuver.ng hyperscnic f.ight under conditions
appropriate to the mission involved. The missions of interest include those of
aircraft, e.g., the Orient Express, and hybrid or “spaceplane" vehicles, e.q.,
the single~stage~to-orbit or transatmospheric Vehicle (TAV), and the
aervassisted spacecrait such as the Aeroassisted Orbital Transfer Vehicle
(AOTV). These missions feature aeromaneuvering flight at high altitudes and
high lMach number, and are characterized by protracted global-scale maneuvers.
Under these conditions, the trajectory may be significantly affected by
rotating-ELarth and Earth-curvature eirfects in addition to the primary balance ot
gravity, thrust, and aerodynamic forces. 1In addition, the characteristic
trajectory parameters as well as the associated coordinate system in which the
trajectory is described require eva.uation since aircraft related parameters and
frames of reference are typcally different from those of orviting spacecraft and
reentry trajectories.

The purpose of this study was to develop simplified analytical methods for
parametric analysis of hypersonic maneuvering flight. The effort included a
review of different formulations of the general equations of motion, their
associated coordinate frames, various simplifications of the equations, and
previously achieved analytical solutions. This study sought to both extend
previous solution methods and to develop new ones. In addition, evaluation of
the literature and developing a systematic perspective on the knowledge it

represents proved to be a major portion of the effort.

2. Background

2.1 Literature Categorization

A review of the hypersonic maneuvering-flight literature involves

categorization into planar/nonplanar studies, studies including/excluding



propulsive thrust, and studies using an Earth-fixed wind axes coordinate frame
or Earth-centered spherical coordinate frame or orbital axes/elements frame.
Also, the varied assumptions of maneuver constants and equation transformations
employed in the previous studies are of interest. Excluded from this review are
earlier studies involving ballistic reentry vehicles and studies focussing on
the guidange/navigation/control optimization of hypersonic maneuvering flight.
References 1 - 3 are examples of general studies presenting full derivation of
the equations of motion with both analytical and computational solutions.
Shkadov, et all treat propelled aircraft as well as thrustless maneuvering
descent from orbit, both with Coriolis effects excluded. LohZ2 treats the
various cases of thrustless lifting and nonlifting reentry, again with Coriolis
effects excluded from analytical solutions. Vinh, et al3 derive the full
equations of motion, and then exclude from analytic solutions Coriolis effects
as well as thrusting during reentry. The scarce literature dealing with
thrusting maneuvering hypersonic flight is found in References 4 through 13.
References 4 - 10 focus on the nonplanar (turning) "aerocruise" maneuver vhere
thrust continually cancels drag. References 11 - 13 deal with simplified
analytical solutions for planar imaneuvering Transatmospheric Vehicle (TAV)
flight. The prolific nonthrusting or "aerogliding" literature includes
References 13 through 27 and 36 for nonplanar £light and References 28 through
34 for planar flight. Reference 35 provides a general theoretical formulation
applicable to all kinds of missions.

By far the majority of the literature employs a wind axis coordinate frame
in which the equations of motion are expressed. As exceptions, equations are
expressed in a spherical coordinate frame in References 5, 8, 15 and 29, and in
an orbital element frame in References 9 and 10; the frames employed are not
obvious in References 12 and 24. Finally, pure computational solution
techniques are used in References 6, 7, 12, 19 through 24, 29, 30, 33 through
36. All other references to some extent provide analytic solutions, some with
computational solutions for comparison. None of the references employing wind
axis coordinates and providing analytical solutions include Coriolis effects on
the trajectory and vehicle performance. Further, analytic-solution references
show a bewildering variety of parameters chosen as the independent variable of
differentiation in the transformed differential equations of motion that
facilitate analytical solutions. Variables are used such as flight path
angle ¥, time t, and distance along the trajectory s. These analytic references
also show a large variety of assumptions on constant parameters during
maneuvering flight: References 4 and 7 hold velocity V and altitude (and thus
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density) constant during the turn, References 4, 6 and 7 bank angle &, and
References 4, 7, 11 and 13 dynamic pressure d.

3. General Equations of Motion - Different Formulations

3.1 Earthr-fixed Geographical Frame

vinh, et all provide a general formulation for the nonplanar equations of
motion in an Earth-fixed rotating frame where thrust and aerodynamic forces
(lift and drag) are included. The reference plane is the equatorial plane, so
that vehicle position is described in latitude/longitude/altitude coordinates
(geographical coordinates). These equations comprise a determinate set of three

dynamical and three kinematical equations in six unknowns as follows:

% = TL‘:\E_"D. - asin\' +wircos (ST cosP —cos¥singsin ‘f’)
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The equations assume a spherical, rotating Earth, and out-of-plane force is
generated by banking the lift force. In the discussion of these equations, the
various contributing "acceleration" terims or effects are referred to as lift
(L/m), drag (D/m), thrust (T/m), gravity (g), centrifugal (V2/r), Coriolis
(2wV), and Earth-centrifugal (yw2). The last two are "Earth-rotation"
effects, while the centrifugal term V2/r is due to flight path curvature.
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Table 1 estimates the order of magnitude (in g units) of each of these
contributing terms for a variety of missions, It becomes obvious that although
the Earth centrifugal terms (pw?2) Mmay be neglected for all missions, the
Coriolis term should be retained for high-altitude, hypersonic global-scale
missions such as the TAV and the AOTV. This term is not retained in any of the
earlier studies reporting analytic solutions to the equations. The development
of corresponding analytical solutions where the Coriolis term is retained has
been a chief focus of the present work. It is of particular interest to compare
accelerations in g units as a function of ilach number for (gravity +
centrifugal), Coriolis, and Earth-centrifugal effects (Table 2) It is seen that
the Earth-centrifugal efZect is always neglectable, but Coriolis is 10% or more
of the sum (gravity + centrifugal) at lMach numpers of 15 and above (about 5% at
4= 8.

Finally, Equations 1 - 3 degenerate to those employed in much of the
planar-flight analytic-solution literature (References 11 - 13) when all the
Earth-rotation effects are negiected (and €,0 = 0):

T b "
@ :%-—- == - asin®

® V'%% = %i._ 3(@-3%?)(03Y

The Vinnh formulation involves Earth-fixed latitude/longitude, i.e.,
geographical coordinates, and is a natural formulation for karth-relative motion
in nonmaneuvering reentry. The equatorial plane is the reference plane, making
downrange/crossrange maneuvers very diflicult to express and visualize by means

of this formulation,

3.2 Orbital Frame

CervisilO presents a succinct summary of the equations for motion assuming
a spherical nonrotating Earth and expressed in terms of the variation of orbital
elements caused by aerodynamic forces. These equations are coupled,
first-order, nonlinear differential equations in terms of time derivatives of

the orbital elements:
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Table Z

Com,m.iso., o Acceleration Terms as a

Func.ﬁ‘o-\ b‘y f’lad Uu-uLu.

gravtytceatri}  Copiolis Earth- Centri.
Mack ‘:PP::- (|_ .\53 2wV (!‘i".‘)
Numbes (':/‘) ] 4 7 max
4 330 6.998 0.005 ©.0035
5 5o 0.956 0.0as 6.0035
o 3330 0.823 0.050 0.003G
5 4450 0.top 6.074 0.003¢
Q0 E6bo 6. 90 0.100 0.003¢

Neote Ve = orbital ve loéﬁ‘y ~ 7904 M/_g = \r}?
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In the absence of 1lift, drag, and thrust forces, these eguations describe a
conic orbit. Analytic and computational soiutions built on this framework have
largely been restricted to aerocruise and gliding plane-change (inclination
change) maneuvers whose application of interest is to AOIV-like missions.

Clearly, this formulation expresses the modification of orbital motion
produced by transient aerodynamic forces. It is a natural formulation for
spacecraft maneuvers involving skip-trajectory passage through the atmosphere.
It uses as the reference plane the original orbital plane, which is
Earth-centered (and egquivalent to a great-circle ground track). Thus,
maneuver-produced downrange/crossrange deviations are more easily expressed with
this formulation than with the previous one. However, the motion is inertially
referenced, so that Earth-relative motion is not easily expressed or visualized
in this case.
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3.3 Crossrange/Downrange Earth-Fixed Formulation

Ikawa35 has provided a useful formulation of the equations of motion that
expresses Earth-relative motion in coordinates that use as the reference plane
the initial orbital plane (or heading plane for atmospheric vehicles). This
formulation leads naturally to downrange/crossrange motion solutions and
visualization. As such, it is probably the most useful formulation for
aeromaneuvering missions. The formulation describes orbital (conic) motion in
the absence of thrust and aerodynamic forces. It was implemented on an IBii PC
host microcomputer, andé lkawa describes accurate solutions for several
distinctly difrerent missions: 1) orbital motion and ground track for two
different orbits including a 24-hour, 600 inclination orbit; 2) reentry
missions including a synergetic orbit plane-change maneuver, and a more general
nission of deorpit-to-land from elliptic LEO using aercmaneuvering; ana 3) a
cross-country subsonic commercial aircraft flight.

The general equations of motion developed in this formulation are as
follows:

@ Y. Teos€ =D _ sing +F @F,
dt

m r?

¥ Tsh ? ?
@ V%: hs'."':s_:l.‘.cosr—(/;"_’—!;)cu”( +2VQ)C2+ bW E

Vcos‘Si_'f: Tsine+ L ;o= FlosNcus YHoad —3ywC3~tw’ R
T ~

r
and b Vo y d6 - VeusYeosy dQ . Veas¥s/n¥
dt = dt XY ot k
w heve
Ca= Cos{pcas@cos ¥=Siniy [s,’.‘ @ cas(By+8) + SV /MO silBo+ 9)]
Cop ol l e AT n @3/ ¥)5/m (B046)
terms £3= Cosi, (cos¥amd) ~SinFcosGsrn P) +sinlo) (cos¥ cas@ + ¥/ a Qs ¥ )5/ (Go
-— Sl'nx Ces V (o;(govfe)] )
, L S @5 AV siind 4 cosTeasds/nY
F = [cos"c'.-r Sin¥lco J’(g..,g)]co,q ($/nY €0sQ ~ COSES/n@S I cf) + sm%Zsmw(yoﬂ'st’ +eosTcasds/a
Earth — cos¥corPcos ¥ co:(éo + B)s /n G,{- 9)] ~S/ulycos €, X:. $/nYSsnl cos @ + cOSTS "-)P(.o.f‘-l!
C"‘*:";“?‘( (B, 48) + cosYcos¥sin@ COJ(Q‘ﬁa)]
Terms Fa ={coscs + Si7¢,cos 35, 40) ] cos @ osT co® +5m¥s/nwsin¥)

+ S/ TS i@ (CasY e a @ ~S/nVcas Qs ¥) + SinY cogg cascos (6v16) ""(90*9):( .
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o »
. . "
F3 = 03 oSinlcard casP ~Sin'c o cas® Lsra®sia(8,49)cos@ot 8)+ Sin@ cos P S/n €. *9)]
+ Simlo<os(,y E’-QS Ycos AP 5/ @o'(’e) -sinP S ia ¥ cos @ *6)]
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4. Solutions to Forms of the General Eguations

4.1 General Solutions

Trajectory solutions have been achieved computationally in the past for all
types of missions - orbital motion and maneuvers, aeromaneuvering skip
trajectories (orbit-to-orbit), nommaneuvering and maneuvering orbpit-to-ground
(reentry), single and multi-stage ascent to orbit (maneuvering and
nonmaneuvering), and hypersonic maneuvering aircraft flight. Hypersonic
aircraft, ascent, and orbit-to-ground (reentry) simulations typically utilize
the wind-axis, Earth-relative geographical coordinates formulation, e.qg.,
Eyuations 1 - 3., Orbit-to-orbit simulations either use this same formuiation or
the perturbation-in-orbital-elements formulation, e.g., Equations 6 - 1l,

It would appear that all maneuverable misssions, except perhaps
orbit-to-orpit, would more easily be visualized and studied parametrically when
expressed in downrange/crossranée motion coordinates, and this is the utility
afforcved by the formalation of Ikawa.35 |

Analytic solutions to simplified forms of the general equations have also
been developed in many studies over the years. The most prevalent (and most
reievant) solutions are those developed for forms of the planar wind-axes
eguations under various flight conditions. To describe and summarize these
literature results would require a very lengthy discussion.

Instead, the few results achieved in the present study will be discussed
since tney represent extensions of some of the previously reported analytic

solutions.
4.2 Analytic Solutions

4.2.1 Shallow-angie Hypersonic TAV Climb

Tauber and Adelmanl3 studied the flight mechanics of a shallow-angle
hypersonic climb of a TAV on the way to orbit. The assumptions of the analysis
were 1) ¥<<iso that ees¥ £ 4 ; 2) constant acceleration:'-{—:-and dynamic
pressure %tifva; and 3) planar flight (¥ = constant). Under these conditions,

Equations 1,2 reduce to (wilh €= o)
® -1
= == 2

© v

e

- "%-.(a— .V;) -+ awVango_gvl + TS“:\UDE

e
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The Tauber and Adelman analysis neglected Coriolis terms so that Equations 15,

16 become av _ T _ )}
at M om 1
- L v Tsin€ dX
0= ;-(g T)-» - (“J)

The study went on to determine several analytic results including the following
expression for fuel fraction as a function of propulsion average specific

impulse and vehicle average lift/drag ratio:
@ me P L79T.ve ( 3(0/5)(L/b)¢.)]

In the present study, a corresponding approximate result has been developed
where the Coriolis effect is included. Consider the following eguivalent
assumptions to those made in the Tauber and Adelman study:1l) ¥ =constant<<l and
cos¥xl; 2) planar flight &= 0 and corf};ant heading ¢ . 1In this case, Equations
15, 16 including the Coriolis effect become

dv _T_»
ot Mmoo s .
] T3 ink
@ 0= %‘_(3_!;)4._;‘.“"‘_ + ewVcos Ocas ¥

From Equation 1%, Qssuming €~0

= ™9 - - - awy ~esPcos
L 2 - g - Ygtenesy]
or ]
D= - - 3WV cosPcosy
@ U../o) [ 9

The Tauber and Adelman sLudy derlved the relation

dv_ = . »

= ( — b) LI specific /mpu/se)

and this, inserti\d into Bquatlc:n 20 gives ,_.‘,3“,? . v°~ ) ”hh‘
@ -9 T ml‘=[\-’-(;E)Tc-/—b-s(l—:'9 v)]JV where Ve = F§ veloelty

As in the previous study, the resonable assum')tlon is made of average values of

L/D and specific impulse during hypersonic ascent. Further, it is here assumed

that cos@ = constant, which is a restrictive assumption implying either small

latitude changes or flight near the eguator. With these assumptions (all but

the assumption on cos¢@ are also assumptions in the previous study), Equation 21

can be integrated with the result A g cos®p

@d %f‘ = l-exp § Iavc m G- -3; %‘V;)]E where @;ncd"id)

This result is the extension of the earlier result (Equation 17) where an

approximation to the Coriolis effect is now included. 1t should Se‘:lited that

the approximation in Equation 2 represents a maximum Coriolis effect? Figure 1l

shows plots for Equations 17 and 28, and it indicates that the Coriolis effect

reduces the average specific impulse requirement fLor fixed mf /mj by 4 to

7%. For flight at higher latitudes (or greater latitude changes), the reduction
will be less pronounced, i.e., the corresponding plot will lie between the two
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4,2.2 Hypersonic Gliding Turn

A second extension to previous results was achieved in terms of including
Coriolis effects (in an approximate way) in a basic relation between heading

change and veliocity change during a hypersonic gliding turn. Slyel4 developed
v .
Y= % L. —\((—

where heading Y= 0 and velocity V = Vi at the beginning of the turn, D = drag

the relation

force, Y = side (lateral force) = (L/D)sine if produced by vehicle bank angle &;
Slye derived this result under the conditions of no thrust, shallow flight path
angle (¥<<1), mgsin¥ « D, constant L/D, and constant Y/D. This relation was
used by Tauber and Yang25 to derive an equilibrium glide relation between
altitude and heading, and then to produce a solution for constant bank angle
which minimizes velocity loss in the turn.

The result given by Equation 23 is obtained by neglecting two terms in the
complete laterai-force differential equation of motion (Equation 3). The first
neglected term is the curved flight path centrifugal term (-\gCo.i’tu'-P Faag ),
and neglecting it amounts to assuming negligible magnitude, perhaps due to
restriction to near equatorial locations (small® ). The second neglected term
is the Coriolis term [ awV (fuaYeos@sim¥—S/n@ ], The present study obtains an
approximate result containing the Coriolis term. Under the conditions assumed

by Slye, Equations 1 - 3 become
@& mdV oy
at

&e) ”‘Va—‘g: Ls/ines ~ er’c” vhag +Rw|h<3'co.s¢9:/n‘k-$/'50)

@ MV;_LS: Lmss‘—(s-l;)m+2wlhnco:®cns(f)

If the independent variable is changed from time to distance along the

trajectory s, dV _ ydV d¥ _ y2dY dy _ vy
dt Vds th—“vds V.« =V

which, upon substitution into Equations d%- &, gives
vV . —
T B
mv%.i} = Lcogo™ ~ (ﬁ- .¥.’)M + aWVm CosPcos ¥
‘ . -
”‘%:tol‘f"ba ¢+ 2w CU Cas @S /Ay ~Ssn @)

® ©® 6

mVdY - Lsine -
os
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Dividing Equation 29 by Equation 27 gives
d¥ =~ olVV L—’é’.‘f-— ’;—fusq}hn¢ - 3_"‘5‘."_" (S cosbsin P-S"a@]

This equation may be integrated to give very approximate results if average
values (over the integration variable velocity V) are assumed for the
products/differences of trigonometric functions of heading  and latitude®,.
The result is %_%: %;rns‘ﬁ,‘ %'E. *.:TD Yy T (\/34{‘)- %‘(m&{_%)
Further, an order-of-magnitude analysis shows that in
equation 30, the Coriolis term is second order, while the (¥} - Yg ) term is
first-orcer, comparable to the 1n(V$/V) term. Thus, Equation 30 simplifies to

GD - ¢: = %Sin&"f« \_L‘ - ﬁ_bm)(v_"-v‘-‘)
Figure 2 shows comparable plots of Equations 23 and 31 where average latitude,
heading values of 300 and 200, respectively, have been assumed in Eguation
31. Unfortunately, the subseguent relationships derived from Egquation 23 by
Tauber and Yang2> are difficult to parallel when beginning with Equation 31.

Ikawa36 has examined rotating-Earth effects on ACIV trajectory
simulations, and has concluded that they are signiificant (see conclusions of

the present study below).

5. Conclusions and Recommendations

The research performed during this effort involved both an evaluation and
organizing of a rather wide literature and the techniques and solutions
presented therein, and attempts to develop new analytical solution methods for
parametric analysis of vehicle performance and design. The literature
evaluation was very successful, but only limited success was achieved with
extending previous analytical solution methods, and no success with developing
completely new methods,

It is believed the most important contribution of this research is the
following set of conclusion:

1) The best formulation of the governing equations for current missions of

interest appears to be that of Equations 12 - 14: the plane of
reference is the initial heading plane, the motion is Earth-relative,
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and the motion of the maneuvering hypersonic vehicle is easily
expressed and visualized in crossrange/downrange coordinates.

2) These equations can and should be implemented (and optimized for solution
speed) on modern, high-speed, high-resolution graphics engineering
workstations,

3) Parametric design -‘requires high-speed, fast-turnaround, user-interactive
workstation-hosted implementation of these equations for trajectory
simulations. This appears to be the only way to conveniently proceed.

q——[4) Inclusion of Coriolis effects by the present study along with the
study of Ikawa36 indicates previous analytic results could have
significant errors in design and performance concllusions, due to

neglect of these effects.
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